
Xpert: Empowering Incident Management
withQuery Recommendations via Large Language Models
Yuxuan Jiang

∗

University of Michigan

Ann-Arbor

USA

Chaoyun Zhang
†

Microsoft

China

Shilin He

Microsoft

China

Zhihao Yang
∗

Peking University

China

Minghua Ma

Microsoft

China

Si Qin

Microsoft

China

Yu Kang

Microsoft

China

Yingnong Dang

Microsoft

China

Saravan Rajmohan

Microsoft

China

Qingwei Lin

Microsoft

China

Dongmei Zhang

Microsoft

China

ABSTRACT

Large-scale cloud systems play a pivotal role in modern IT infras-

tructure. However, incidents occurring within these systems can

lead to service disruptions and adversely affect user experience. To

swiftly resolve such incidents, on-call engineers depend on craft-

ing domain-specific language (DSL) queries to analyze telemetry

data. However, writing these queries can be challenging and time-

consuming. This paper presents a thorough empirical study on the

utilization of queries of KQL, a DSL employed for incident man-

agement in a large-scale cloud management system at Microsoft.

The findings obtained underscore the importance and viability of

KQL queries recommendation to enhance incident management.

Building upon these valuable insights, we introduce Xpert, an

end-to-end machine learning framework that automates KQL rec-

ommendation process. By leveraging historical incident data and

large language models, Xpert generates customized KQL queries

tailored to new incidents. Furthermore, Xpert incorporates a novel

performancemetric calledXcore, enabling a thorough evaluation of

query quality from three comprehensive perspectives. We conduct

extensive evaluations of Xpert, demonstrating its effectiveness

in offline settings. Notably, we deploy Xpert in the real produc-

tion environment of a large-scale incident management system in

Microsoft, validating its efficiency in supporting incident man-

agement. To the best of our knowledge, this paper represents the

first empirical study of its kind, and Xpert stands as a pioneer-

ing DSL query recommendation framework designed for incident

management.

∗
This work was completed during their internship at Microsoft Research Asia.

†
Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICSE 2024, April 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0217-4/24/04. . . $15.00

https://doi.org/10.1145/3597503.3639081

KEYWORDS

Incident Management, Query Generation, Large Language Model

ACM Reference Format:

Yuxuan Jiang, Chaoyun Zhang, Shilin He, Zhihao Yang, Minghua Ma, Si

Qin, Yu Kang, Yingnong Dang, Saravan Rajmohan, Qingwei Lin, and Dong-

mei Zhang. 2024. Xpert: Empowering Incident Management with Query

Recommendations via Large Language Models. In 2024 IEEE/ACM 46th In-
ternational Conference on Software Engineering (ICSE ’24), April 14–20, 2024,
Lisbon, Portugal. ACM, New York, NY, USA, 13 pages. https://doi.org/10.

1145/3597503.3639081

1 INTRODUCTION

Large-scale cloud systems, such as AWS, Azure, and Google Cloud,

are indispensable pillars of modern IT infrastructure [1]. These

platforms cater to a diverse range of online products and services,

attracting a substantial global user base and generating significant

revenue. In this context, ensuring the reliability of these cloud ser-

vices becomes of utmost importance, as it directly impacts revenue

generation and customer satisfaction [2]. Despite considerable ef-

forts invested in constructing robust systems, incidents continue

to be a prevalent issue in cloud infrastructures [3]. Such incidents

lead to service disruptions and have a detrimental impact on the

overall user experience [4].

In the event of an incident, on-call engineers (OCEs) diligently

adhere to established procedures to swiftly identify the potential

root cause and initiate prompt mitigation or resolution efforts [5, 6].

To accomplish this objective, OCEs heavily rely on the analysis of

telemetry data, encompassing vital runtime information such as

logs [7], time series [8–11] and traces [12–14]. These data hold a

paramount significance in software systems and are consistently

recorded and stored in databases throughout the service’s operation.

Similar to formulating standard database queries, OCEs manually

compose domain-specific language (DSL) queries to extract the nec-

essary telemetry data and thoroughly investigate the circumstances

surrounding the incidents, enabling them to conduct effective triage

and expedite the implementation of appropriate mitigation actions.

Writing appropriate queries for incident management is however

a challenging task, as it necessitates considerable domain expertise

to accurately select the appropriate databases, tables, and columns,

https://doi.org/10.1145/3597503.3639081
https://doi.org/10.1145/3597503.3639081
https://doi.org/10.1145/3597503.3639081
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597503.3639081&domain=pdf&date_stamp=2024-04-12

ICSE 2024, April 2024, Lisbon, Portugal Y. Jiang, C. Zhang, S. He, Z. Yang, M. Ma, S. Qin, Y. Kang, Y. Dang, S. Rajmohan, Q. Lin, D. Zhang

and subsequently construct a query that incorporates various op-

erations such as join, count, aggregation, etc.. This process can be

time-consuming and requires careful attention to detail. As a com-

mon practice, engineers often resort to finding suitable queries in

existing troubleshooting guides (TSGs) to expedite the process [15].

However, this approach relies heavily on the documentation ability

of engineering teams, and OCEs may struggle to find the relevant

queries if the TSGs are poorly organized or non-existent. Further-

more, queries can become highly complex, particularly when they

span multiple databases. Even a minor mistake in the query can

result in significant discrepancies in the retrieved results. Providing

a useful query to OCEs can therefore significantly reduce their

effort and expedite the incident mitigation process.

In this paper, we present a comprehensive empirical study on

Kusto Query Language (KQL) queries utilized for incident manage-

ment in a world-wide cloud computing company Microsoft. Our

study delves into the frequency, complexity, and diversity aspects

of these KQL queries. Key findings from our investigation reveal the

following: (i) the majority of incidents can be managed effectively

with a small number of KQL queries; (ii) Most of KQL queries used

in incidents tend to be relatively simple in structure; and (iii) KQL
queries exhibit long-tail pattern in templates and significant time

variation. These insights underscore the necessity and practicality

of automating KQL recommendation for OCEs to streamline the

incident management.

Based on the insights gained from our empirical study, we in-

troduce Xpert, an end-to-end framework designed to empower

the incident management process by automatically recommending

or generating KQL queries. Drawing from the abundant historical

incidents and their corresponding KQL records in the past two

years, Xpert provides customized KQL recommendations based

on the specific context of new incidents. The framework efficiently

extracts common patterns, such as tables and templates, from his-

torical similar incidents, facilitating effective automation in Xpert.

To address the limitations of traditional natural language process-

ing (NLP) metrics [16] in evaluating domain specific queries, Xpert

incorporates a novel performance metric called Xcore. This tai-

lored metric allows for more comprehensive evaluation from three

different perspectives, enhancing the overall quality assessment of

the generated KQL queries.

To mitigate the challenges posed by costly pre-training, fine-

tuning, and frequent updates of conventional NLP models, Xpert

leverages the exceptional few-shot learning capabilities of Large

Language Models (LLMs) to generate incident-specific KQL queries

with only a few examples provided, without the need for parameter

tuning. LLMs have demonstrated remarkable proficiency in parsing

complex data [17], extracting essential information [18], and pro-

ducing concise, insightful outputs in both natural language [19, 20]

and code [21] domains. This makes them well-suited for the con-

text of Xpert, where incident descriptions are often intricate and

unstructured, posing challenges for traditional smaller language

models. Moreover, the few-shot learning ability of LLMs in specific

domains allows them to quickly adapt to novel and evolving inci-

dent types by leveraging historical data in an online fashion. This

adaptability significantly enhances the quality of the generated

KQL queries, rendering LLMs an ideal solution for this task.

We thoroughly evaluate Xpert, deploying it as a KQL recom-

mendation framework, which serves as a pivotal component within

the incident management system atMicrosoft. Experiments show

the effectiveness of Xpert from both offline and online viewpoints.

In summary, this paper presents the following contributions:

• A comprehensive empirical study on the utilization of KQLs in

incident management, revealing interesting insights that inspire

the KQL recommendation.

• Development of Xpert, an end-to-end KQL recommendation

framework that leverages the few-shot learning capabilities of

LLMs to empower automated KQL generation.

• Introduction of Xcore, an evaluation metric tailored to assessing

the quality of generated KQL queries from various perspectives,

addressing the limitations of traditional NLP metrics.

• Extensive offline evaluation of Xpert using a large-scale dataset

from a real incident management system, showcasing its superior

KQL quality compared to several strong baselines.

• Successful deployment of Xpert as a critical KQL recommenda-

tion framework within Xpert’s incident management system,

with pilot results demonstrating its exceptional performance.

To the best of our knowledge, this paper is the first to present an

empirical study on the characteristics of DSL queries in incident

management, and Xpert stands as the pioneering KQL recommen-

dation framework specifically tailored for incident management.

2 BACKGROUND

This section provides an overview of incident management in the

context of cloud computing, with a particular focus on the utiliza-

tion of domain-specific language, KQL queries.

2.1 Incident Management in Cloud

The increasing popularity of cloud systems in recent years can

be attributed to their inherent advantages, including scalability,

accessibility, and cost-effectiveness [5, 22]. However, unplanned

disruptions in cloud services, commonly referred to as incidents, re-

mains a frequent phenomenon within cloud infrastructures [23, 24].

To address incidents, OCEs typically rely on an incident manage-

ment system, which involves various measures such as executing

DSL queries, analyzing logs, and discussing with other engineers

[25, 26].

Taking the incident management system of Microsoft as an

example, when an incident is detected, a ticket is created in the

system, with a title and summary provided by engineers manually

or monitors automatically to describe the incident’s context. During

the incident management process, OCEs frequently compose and

execute KQL queries on the service telemetry to comprehend the

incident, identify the affected scope, and diagnose the underlying

cause [7, 27]. Typical telemetry data such as traces and logs related

to the incidents may then be extracted and analyzed to aid in the

diagnosis and mitigation processes [14, 28, 29]. These efforts yield

valuable insights that greatly contribute to the triage process and

subsequent mitigation actions [30].

2.2 KQL and KQL Queries

A domain-specific language (DSL) [31] denotes a language that is

specifically crafted for a distinct domain and customized to cater

Xpert: Empowering Incident Management with Query Recommendations via Large Language Models ICSE 2024, April 2024, Lisbon, Portugal

to specific tasks, industries, or areas of expertise. Illustrative exam-

ples of DSL queries encompass SQL for managing databases [32],

GraphQL for querying graph databases [33], PromQL employed for

querying metrics in Prometheus monitoring system [34], Search

Processing Language (SPL) in Splunk [35].

Kusto Query Language (KQL) is a DSL developed byMicrosoft,

and it has been widely adopted within the organization. The lan-

guage is designed to work with schema entities arranged in a hier-

archy similar to SQL, comprising databases, tables, and columns.

Behind the scenes, a big data analytics cloud service is optimized to

handle KQL queries over various types of data, including structured,

semi-structured, and unstructured data. For example, the services

team regularly stores telemetry data such as traces, logs, and met-

rics in KQL databases, facilitating future queries for diagnostic and

analytical purposes. By utilizing KQL, engineers can effectively

explore the data, uncover patterns, identify anomalies, and perform

other important tasks during the incident management process.

TableTable KQL Query TemplateKQL Query

Figure 1: An example of a KQL query and its template.

In Fig. 1, we present an example of a KQL query. A typical KQL

query comprises a primary table name, which signifies the main

data source for the query. It may also include filter operators (e.g.,
“where”), selection operators (e.g., “take”), and join/union operators

(e.g., “join”). In essence, a query template can be derived from a KQL

query by replacing the actual values in the query with placeholders.

The resulting template is depicted on the right side of Fig. 1. These

placeholders represent data types and query templates can be reused

in different incident tickets. As a result, both the template and the

full KQL query provide valuable information to OCEs for efficient

incident management.

2.3 System Objective

The primary objective of Xpert is to recommend KQL queries to

OCEs within incident management systems, utilizing the available

incident context and information. This recommendation process

aims to facilitate various aspects of incident management, including

triage [36] and diagnosis [37], with the ultimate goal of reducing

the time to mitigate (TTM) [23] for incidents. Xpert offers two

hierarchical levels of KQL query recommendation: (i) Template

Recommendation, which involves suggesting a query template

(see Fig. 1 right), that is the skeleton of queries for OCEs to fill

in more concrete values. (ii) Query Recommendation, refers to

predicting the full KQL query, with all values in the query filled.

The recommended template and query are both submitted to the

incident management system and presented to OCEs.

The rationale behind this hierarchical approach lies in the under-

standing that incident context may not always provide sufficient

information for all values and fields in the full query. Some of these

details may require domain-specific knowledge possessed by OCEs.

By leaving certain fields as placeholders in the template recom-

mendations, OCEs can complete the missing information based on

their expertise. However, it is important to emphasize that template

1 2 3 4 5 6 7 >=8
Number of KQL queries per incident

0%

20%

40%

60%

80%

100%

Pr
op

or
tio

n
of

 in
cid

en
ts

1 2 3 4 5 6 7 >=8
Number of KQL queries per discussion

0%

20%

40%

60%

80%

100%

Pr
op

or
tio

n
of

 d
isc

us
sio

ns

Figure 2: Distributions of KQL query number per inci-

dent/discussion.

recommendations still provide valuable insights to OCEs, thereby

enhancing the incident management process.

3 EMPIRICAL STUDY

To better understand KQL in the context of incident management,

we conducted a large-scale empirical study using incident tickets

from the incident management system atMicrosoft. Our objective

was to analyze the characteristics of KQL queries and gain insights

to guide the design of Xpert. For this purpose, we collected 346,508

incident tickets that were categorized into four severity levels (0-3,

from highest to lowest) from the top-30 services with the highest

number of incidents, spanning from January 2021 to November 2022.

These incidents represent over 60% of total incidents and resulted

in a dataset of 712,222 KQL queries. Note that only incident tickets

that contain at least one KQL query are included. Specifically, we

aimed to answer the following research questions (RQs):

• RQ1: How frequently are KQL queries used by OCEs?

• RQ2: How complex are the KQL queries used by OCEs?

• RQ3: How diverse are the KQL queries employed?

The following subsections present our findings to these RQs.

3.1 RQ1: Frequency of KQL Queries

In the incident management platform, human-written KQL queries

are typically posted in the “discussion” section of an incident ticket.

The ticket may contain multiple discussions, and within each dis-

cussion, multiple KQL queries can be included. Fig. 2 displays the

distributions of the number of KQL queries per incident and per

discussion across all incidents. Upon observation, it is evident that

over half of the incidents have only one KQL query, and over 90%

of the discussions within an incident contain just one query. These

findings indicate that a concise set of well-targeted queries is of-

ten sufficient to manage various incidents effectively. Given these

findings, we set the primary objective of Xpert to recommend

the initial KQL query when a new incident is created, as this is

sufficient to effectively address the majority of incident tickets.

Table 1: Query reaction time statistics of incidents.

Severity Mean Median P90 P95 P99

0 553 130 45 30 28

1 992 114 15 10 3

2 801 49 6 4 2

3 4,563 839 22 10 2

Overall 3,197 216 11 6 2

Table 1 presents the statistical analysis of the time duration be-

tween the occurrence of the first KQL query and the incident’s

ICSE 2024, April 2024, Lisbon, Portugal Y. Jiang, C. Zhang, S. He, Z. Yang, M. Ma, S. Qin, Y. Kang, Y. Dang, S. Rajmohan, Q. Lin, D. Zhang

0 50 100 150 200 250 300
Number of tokens

0.000
0.002
0.004
0.006
0.008
0.010

De
ns

ity

mean: 111.90
median: 63.00

Figure 3: The token distribution ofKQLqueries in the dataset.

creation time, referred to as “query reaction time”. This analysis is

further categorized based on incident severity levels. Note that time

unit in the table are normalized for anonymity. The query reaction

time reflects the duration within which an OCE writes a KQL query

in response to a reported incident. Notably, for high-severity inci-

dents (severity levels 0-2), the query reaction time is significantly

shorter, indicating that OCEs respond much more promptly to these

critical and impactful incidents. This observation aligns with our

expectations, as high-severity incidents demand swift attention and

action. The faster response times for high-severity incidents under-

score the importance of timely intervention in critical situations,

which can be supported by efficient KQL recommendations offered

by Xpert. Additionally, we observe that 95% of incidents have a

query reaction time greater than 6 units. This finding is valuable for

informing the design of the time window of input that we include

in Xpert, and its detailed design will be discussed in Sec. 4.2.1.

Takeaways 1: The number of queries required for effective

incident resolution is small. The query reaction time for high-

severity incidents is significantly shorter compared to lower-

severity incidents.

3.2 RQ2: Complexity of KQL Queries

We explore the complexity of KQL queries that OCEs write for

incident management. The complexity of queries often signifies

the level of filtering (e.g., “where” operator) and the number of

data sources involved, making it a valuable metric for gauging the

comprehension and understanding of the incident. To quantify the

query complexity, we evaluate the number of tokens in the query,

which provides a measure of the overall query length.

Fig. 3 presents the distribution of tokens in KQL queries within

the studied dataset. The analysis reveals that the token count fol-

lows a long-tail distribution, with the majority of queries being

relatively short (less than 63 tokens). This aligns with our expec-

tations, since during an incident, OCEs may have limited time

for in-depth understanding, leading to the formulation of shorter

queries. Consequently, this characteristic makes the task of query

recommendation more feasible, as shorter queries are generally less

diverse and easier to generate compared to more complex ones.

This findings reinforce the fundamental objective of Xpert. It

highlights that in general, Xpert does not require the generation

of overly complicated queries for most incidents, as the majority of

incidents can be effectively managed with relatively concise and

straightforward queries. This observation aligns with the design

philosophy of Xpert, which aims to recommend KQL queries that

are concise yet effective in addressing incident management tasks.

Takeaways 2: The majority of incidents can be effectively

managed using relatively concise and straightforward queries,

rendering the query recommendation task more feasible.

3.3 RQ3: Diversity of KQL queries

10% 20% 30% 40% 50%
Top-K in percentage

40%

60%

80%

100%

Co
ve

ra
ge

 ra
tio

Table
Template

Figure 4: Query coverage ratio w.r.t. top-K tables/templates

in percentage.

Lastly, we turn our attention to investigating the diversity of KQL

queries for incident management. Fig. 4 displays the coverage ratio

with respect to the top-k percentage in terms of tables and templates.

The results show that the top 5% of tables used by most queries

already cover 80.9% of the queries, while the top 5% of templates can

cover 46.1% of the queries. This long-tail pattern further supports

the notion of low diversity in employed KQL queries, as common

patterns are widely shared among them. This finding enhances

the feasibility of the query recommendation goal, as these shared

patterns can be effectively extracted by the LLMs. In addition, our

analysis reveals an interesting finding regarding the sharing of

query templates across different services. It is observed that query

templates are rarely shared between services, with the percentage

of shared templates being lower than 4.75%. This low percentage

indicates a high level of isolation between services, meaning that

each service tends to have its own unique set of query templates

specific to its incident management requirements. This finding

holds important implications for the design of the hierarchical data

retrieval approach in Xpert to limit the retrieval to incidents within

the same service. We will provide details on this design in Sec. 4.3.1.

1 5 9 13 17 21
Month

0.0

0.2

0.4

0.6

0.8

1.0

In
cr

ea
sin

g
ra

tio

Figure 5: The mean±std. of the monthly ratio of KQL queries

covered by novel templates across all services.

Finally, we present the mean±std. of the monthly ratio of KQL

queries covered by novel templates across all services, as depicted

in Fig.5. This metric measures the proportion of queries that are as-

sociated with previously unseen or unique templates within a given

month, offering insights into the degree of change and data drift

observed in KQL queries over time. We observe that KQL queries

exhibit significant variation on a monthly basis, with an average

of over 60% of KQL queries utilizing different templates compared

to the previous months, even within the same service. This find-

ing highlights the dynamic and evolving nature of incidents, and

underscores the need for adaptable and tailored KQL queries for

incident management. Consequently, we have designed Xpert to

accommodate such time-varying patterns in an online manner, as

elaborated in Sec. 7.

Xpert: Empowering Incident Management with Query Recommendations via Large Language Models ICSE 2024, April 2024, Lisbon, Portugal

Takeaways 3: (i) KQL queries exhibit low diversity in terms

of both tables and templates; (ii) templates used in different

service are rarely shared across each others; (iii) KQL queries

exhibit significant variation and data drift on a monthly basis.

Summary. In summary, Takeaway 1 elucidates the primary objec-

tives behind the design of our KQL query recommendation system

Xpert. It underscores the importance of targeting the initial query

and template of KQL queries for incidents, as these encompass a

substantial portion of incident tickets. Furthermore, Takeaways

2 and 3 provide valuable insights into the relatively modest com-

plexity and diversity observed in the KQL queries employed for

incident management. These insights underscore the practicality of

automating the recommendation of KQL queries. Subsequently, we

introduce the architecture and design principles of Xpert, which

are founded upon the discoveries derived from our empirical study.

4 THE DESIGN OF XPERT

We provide an overview of the architecture of Xpert in Section 4.1,

and delve into its components in the following subsections.

4.1 Xpert in a Nutshell

Fig. 6 presents an overview of theXpert framework. Upon receiving

a new incident ticket in the incident management system, the data

processor gathers relevant incident context and preprocesses it to

a format compatible with the language model. Subsequently, an

embedding model is employed to vectorize the incident context and

conduct a search for similar historical incidents along with their

corresponding KQL queries. By combining these retrieved samples

with the target incident context in a prompt sequence, Xpert feeds

this input into the LLM to generate an initial KQL template and

query simultaneously.

The generated KQL template and query then undergoes a post-

validation process to verify its adherence to correct grammar. Valid

query is presented to the OCEs for recommendation, while invalid

query undergoes necessary rectification to ensure its correctness

before being forwarded to the OCEs. At last, the true queries crafted

by OCE based on our recommendations are promptly added to the

vector database to keep it up-to-date. We also designed a dedicated

Xcore to evaluate the quality of the recommended query, which

we will elaborate in Sec. 5

4.2 Incident Data Processor

The incident data processor gathers comprehensive information

from the incident ticket and performs appropriate pre-processing

to optimize the utilization of this data, as elaborated below.

4.2.1 Information Collection. To equip the LLM with sufficient

information for effective query recommendation, Xpert employs a

comprehensive approach in collecting rich incident data from vari-

ous resources within the incident management system [38]. These

resources encompass: (i)Metadata, which entails fundamental inci-

dent details such as the creation time, the service which triggers the

incident, and other essential information. (ii) Title of the incident,
which may be system-generated or written by an engineer. (iii)
Summary of the incident, serving as a high-level overview either

generated by the monitoring system or written by an engineer. (iv)
Discussion pertaining to the incident, encompassing system logs

related to the incident as well as discussions among the engineers.

It is important to note that the discussions included in the incident

context are confined to a time window of 5 time units from the

creation time of the incident, ensuring the timeliness of the query

recommendation. The selection of this 5-unit time window is based

on the findings presented in Table 1, which indicate that it covers

at least 95% of the incidents before the initial KQL query is posted.

By incorporating these diverse contextual elements, Xpert maxi-

mizes the information available for the LLM, while upholding the

timeliness of the query recommendation.

4.2.2 Data Pre-processing. Upon collecting all information from

the incident tickets, the data is concatenated into a text sequence.

Xpert performs two pre-processing steps on the incident context:

(i) Repetitive information that appears multiple times in the con-

text is removed. (ii) If the incident context exceeds a certain token

threshold, the sample is clipped to avoid over-length. This is neces-

sary as the input of the LLM is subject to token limitations. This

pre-processing ensures improved information utilization in the data

while adhering to the LLM’s input constraints on token length.

4.3 KQL Query Recommendation

Pretrained Language Models, such as the GPT series [39] and

LLaMA [40], are typically trained on vast amounts of general infor-

mation from publicly available domains or the Internet. However,

their training corpus often lacks specialization in certain domains,

such as internal incident management data. Fine-tuning a LLM

with domain-specific data can be extremely costly [41], and in

some cases, it may be infeasible due to resource constraints or

restrictions imposed by the model provider [39].

To address this limitation, we explore the few-shot learning capa-

bility of LLMs [42], which allows us to demonstrate a few examples

in the prompt sequence provided to the LLM for prediction. This

approach, known as in-context learning (ICL), has shown to be

effective in various domain-specific scenarios [43]. By combining

general knowledge from the LLM itself with context from special-

ized samples provided in the prompt sequence, ICL leverages both

sources of information to make accurate predictions.

We therefore adopt a combination of LLM and ICL to gener-

ate KQL queries tailored for incident management. This approach

utilizes the pre-processed incident context and similar historical

incidents as demonstration and context for the LLM. The entire

process encompasses three crucial steps, namely (i) similar incident

retrieval, (ii) prompt construction; and (iii) DSL query generation.

we provide details of each step in the following subsections.

4.3.1 Similar Incident Retrieval. The first crucial step in the ICL

process is to retrieve incidents that are similar to the target incident,

along with their corresponding queries. The ground truth queries

are compiled when OCEs submit their initial query within the

incident management system following the reception of an incident

ticket.

This retrieval process involves utilizing an embedding model

to vectorize historical incidents and the target incident, making

them searchable using distance metrics. In this study, we utilize

an embedding model [44], which encodes all incident contexts

ICSE 2024, April 2024, Lisbon, Portugal Y. Jiang, C. Zhang, S. He, Z. Yang, M. Ma, S. Qin, Y. Kang, Y. Dang, S. Rajmohan, Q. Lin, D. Zhang

ID XXX

ACTIVE

Severity x

Title

Summary

Discussion

...

New Incident Ticket

ID XXX

ACTIVE

Severity x

Title

Summary

Discussion

...

New Incident Ticket

Incident
Embedding

Similar Incidents Retrieval

KQL Query Generation

OCEs

Incident Data Processor

Information
Collection

Information
Collection

Data
Pre-processing

Data
Pre-processing

Vector Database

Incident
context

Prompt Constructor

Neighbor
searching

Instruction

+

+
Incident
context

sample 1

Similar incidents

sample nsample 1

Similar incidents

sample n

LLM

Table ...
join ...
union ...

Post-ValidatorPost-Validator

Query RectifierQuery Rectifier

Post-Processor

Generated KQL Query

Valid

invalid

Evaluation

True Query

Predicted
Query

Service 1 Service 2 Service N
...

Vector
Database

Figure 6: The overall architecture of Xpert.

Instruction
Targeted Incident

Context
Incident

Context 1
DSL

Query 1
Incident

Context 1
DSL

Query 1
Incident

Context K
DSL

Query K
Incident

Context K
DSL

Query K
...+ +

Retrieved Similar Samples

Figure 7: The structure of a prompt employed in Xpert.

into 1,536-dimensional vectors. These vectors, along with their

corresponding queries, are stored in a vector database called Faiss

[45], enabling efficient data retrieval.

When a new incident request is received, its context is embed-

ded using the same embedding model. We then retrieve the top-𝐾

similar incidents using the cosine similarity [46] metric. Since the

retrieval process is performed exclusively by considering only inci-

dents falling within the same service as the target incident request,

it narrows the retrieval to a more relevant range since data sources

and templates are rarely shared across services, as suggested in

Sec. 3.3. Furthermore, this exclusive retrieval significantly reduces

retrieval costs. Once the top-𝐾 similar incidents are obtained, we

utilize them as context and construct the prompt sequence for the

LLM, as detailed in the subsequent section.

4.3.2 Prompt Construction and Query Generation. Prompts as lan-

guage sequence inputs to LLMs, serve as a means of interaction

to accomplish specific tasks [47]. In the context of ICL, a typical

prompt comprises three key elements, as illustrated in Fig. 7: (i) An
instruction, to inform the LLM about the goal of the task and the

rules that apply to the task. (ii) Retrieved similar incident samples

from history, including the incident context and their correspond-

ing true queries for incident management. (iii) Targeted incident

context, representing the incident context for which a KQL query

needs to be recommended.

Note that the retrieved incident contexts undergo similar pre-

processing steps as described in Sec. 4.2.2. The number of retrieved

samples included in the prompt depends on the total token length

of the prompt. We adopt a greedy approach to add as many samples

as possible to the prompt, maximizing the context and information

provided to the LLM [48], while ensuring that the number of to-

kens in the prompt does not exceed the LLM’s constraint (8k). The

constructed prompts are directly fed into the LLM to facilitate KQL

query recommendation through the OpenAI API. The API returns

a raw query that has been generated based on the prompt input.

4.4 Post-Processor

To address the issue of potentially non-executable or grammatically

incorrect KQL queries generated by LLMs, which may arise due

to noise in retrieval data or mispredictions, we have integrated a

post-processor into Xpert. The post-processor plays a crucial role

in checking the validity of generated queries and rectifying any

issues whenever possible. It comprises two key components:

• Post-Validator: This component performs a grammar and syn-

tax check on the query using the intrinsic compiler abstract

syntax tree (AST) [49]. By analyzing the data flow of the query,

it determines if the query is executable. If the query fails this

check, it is passed on to the post-rectifier for revision.

• Post-Rectifier: The post-rectifier carries out a two-step revision

process to rectify invalid queries. In the first step, it cleans ex-

traneous tokens from the query, such as spacing and tabs that

might have been mistakenly generated. If the query still remains

invalid, the post-rectifier proceeds to the second step, where we

provide the LLM with the incident context, retrieved examples,

the invalid query, error messages from the post-validator, and

select usage handbook of the KQL. We then prompt the LLM

to attempt fixing the query, resolving more complex cases that

cannot be addressed by simple token removal.

This post-processing mechanism ensures that the KQL queries gen-

erated by Xpert are refined and enhanced to achieve executability

and grammatical correctness, minimizing the need for manual in-

tervention by OCEs. Once an OCE provides a ground-truth query

for an incident, it is promptly added to the vector database. This

ensures that the query becomes available for retrieval by future

incidents, allowing the system to capture any potential data drift,

as discussed in Sec. 3.3.

5 EVALUATIONWITH XCORE

Assessing the quality of generated KQL or other DSL queries poses

a significant challenge, as effective metrics for such evaluations are

lacking. Traditional NLP metrics, like BLEU [50] and METEOR [51],

primarily focus on lexical similarity and do not take into account

code executability and execution accuracy. On the other hand, re-

cent code metrics, such as CodeBLEU [52], are designed to support

various mainstream languages. However, these metrics need to

be customized and tailored to the specific operators or DSL of a

given language, rendering them less scalable. Moreover, evaluating

the execution accuracy of KQL queries is a difficult task, further

complicating the evaluation process, especially in the context of

incident management. Execution results are sometimes not pro-

vided in the incident context and may not be easily reproducible.

This limitation makes it challenging for other code metrics, such as

Spider’s SQL evaluation metric [53] and HumanEval [54], which

Xpert: Empowering Incident Management withQuery Recommendations via Large Language Models ICSE 2024, April 2024, Lisbon, Portugal

Table1

| where StartTime < ago(3d)

| extend Duration = EndTime – StartTime

| where State == “Florida” and StartTime contains “2022-06-21”

| project Duration, State

| summarize count(State)

| sort by Duration asc

Query

Ex
ec

ut
io

n
Fl

ow

StartTime’s type should be datetime

StartTime’s type should be string

Type Conflict!!!

filters out columns other than Duration and State

Create column count_State and delete other columns

1

2

3

4

5

6

7
‘Duration’ does not exist in current context!!!

Figure 8: A semantic check example on an KQL query.

rely on execution accuracy, to be effectively applied for KQL evalu-

ation. Consequently, the overall evaluation of KQL quality remains

a challenge.

5.1 Design of Xcore

To address the limitations of current evaluation metrics, we in-

troduce Xcore, an innovative assessment metric customized for

evaluating the quality of generated queries, with a particular focus

on KQL while also being adaptable to other DSLs. Xcore utilizes

static code analysis [55] to parse KQL queries into distinct com-

ponents using Abstract Syntax Trees (ASTs), and extract name

reference nodes representing table columns. This parsing process

enables us to perform a comprehensive evaluation of KQL queries

from three key perspectives, namely (i) Syntax and Semantic Check,

(ii) Sub-component Matching, (iii) Output-Schema Matching. We

detail each component in the following subsections.

5.2 The Syntax and Semantic Check

To evaluate the executability of a query, we utilize a two-step pro-

cess. First, we employ the built-in syntax checker of KQL to detect

any syntactical errors that may exist in the generated query. This

step is crucial as it ensures that the query conforms to the language’s

grammar rules and structure. Next, the static analysis approach

allows to approximately infer the semantic correctness of the query,

by inferring the data types of these columns based on the semantics

of the associated operations in the query. This analysis allows us to

determine whether the query is semantically sound and executable.

Fig. 8 illustrates an example of the semantic check performed on

an KQL query. In line 2 of the example, the type of StartTime is
inferred as datetime based on the operand ago(3d). However, in
line 4, the query calls a contains operation, which only applies to

string data types. As a result, this operand becomes inexecutable

due to a type mismatch. Additionally, in line 6, the summarize
operation drops the Duration column, as it performs a “groupby”

operation. However, in line 7, the Duration column is called again,

which makes the query invalid. Consequently, the semantic check

assigns a zero score to this check, as the query contains invalid

operations and is not executable. By conducting such semantic

checks, we aim to estimate the validity of KQL queries, highlighting

any issues that may arise during query execution.

It is important to note that this checker primarily assesses the

query at the validity level, meaning that queries passing this checker

are likely to be free of grammarmistakes. However, it is possible that

queries passing this checkmay still encounter runtime errors during

actual execution. Despite this limitation, the checker provides a

valuable approximation of the query’s validity and ensures that

generated queries are less prone to syntax errors.

5.3 Sub-component Matching

Leveraging the parsing results from the static analysis, we employ

the sub-component matching technique to assess the lexical similar-

ity between the generated queries and the ground truths. Following

the design of Spider [53], we extract the operands of tabular com-

ponents from both the ground truth and generated queries. For

instance, for the code where colA > 20, we extract the sets (colA,
where, >, 20) as representations of the operands of different tabular
components. To measure the similarity, we compute the F1 score

by comparing the sets of operands for both the ground truth and

generated queries. The sub-component matching approach offers

the advantage of considering operators that do not have strict order

requirements [56]. This means that changing the order of certain

sub-components, such as filters, in a query may not necessarily

alter the execution results. Therefore, the sub-component matching

technique provides a more flexible and comprehensive evaluation

of lexical similarity between generated queries and ground truths.

5.4 Output-Schema Matching

The evaluation of execution accuracy includes a crucial step of

assessing the output data schema, which comprises essential in-

formation such as column names, data source names, and output

types (e.g., tables or charts). This information plays a pivotal role

in aiding engineers during incident troubleshooting, providing in-

sights into aspects like impact start time and machine IDs. For

instance, consider a scenario where valuable information pertains

to the response delay field, which should be included in the query
output. However, the final recommended query lacks this specific

column, despite a high degree of similarity between the query code

and the ground truth. The absence of such crucial information in

the output diminishes the usefulness of the recommended query.

Consequently, it becomes imperative to evaluate the correctness of

the output-schema to address this issue.

To infer the output schema for both the generated and ground

truth queries, we employ a similar data-flow analysis, as depicted

in Fig. 8. Once the output schema is obtained from the static code

analysis, we parse it into a list of columns, a data source, and the

return type. The final assessment of the output-schema matching

is conducted in a two-fold manner: First, we use the F1 score to

evaluate the similarity of output columns between the generated

queries and the ground truth. Second, we employ binary accuracy

to assess the correctness of the data source and the return types.

This output-schema matching offers a different perspective on the

information that should be returned to provide valuable insights,

whose accuracy is particularly crucial in the context of incident

management.

5.5 Summarizing the Final Xcore

Finally, we combine the results of the three evaluation components

to encapsulate the overall quality of the generated query. We adopt

a linear weighting scheme as follows:

Xcore = 𝛼 · V + 𝛽 · S + 𝛾 · O . (1)

Here,V represents the binary validity score examined in Sec.5.2,

S indicates the F1 score of the sub-component matching score de-

scribed in Sec.5.3, and O represents the summarized output schema

detailed in Sec. 5.4. 𝛼 , 𝛽 and 𝛾 are their corresponding weights, and

ICSE 2024, April 2024, Lisbon, Portugal Y. Jiang, C. Zhang, S. He, Z. Yang, M. Ma, S. Qin, Y. Kang, Y. Dang, S. Rajmohan, Q. Lin, D. Zhang

they sum up to 1. In Xcore, we assign equal weights to V , S, and
O, as all three components hold comparable significance within

the context of incident management. However, these weights can

be easily adjusted to prioritize specific aspects in different applica-

tions, if required. All three scores range from 0 to 1, making Xcore

a continuous value ranging from 0 to 1 as well. A higher Xcore

indicates a better quality of the generated query.

By integrating these three evaluation perspectives, Xcore pro-

vides a robust and comprehensive assessment of the quality of

generated queries, effectively addressing the limitations of exist-

ing metrics and catering to the specific requirements of KQL. It

is worth noting that while Xcore is specifically tailored to KQL,

its adaptability to other DSL queries is straightforward. This can

be achieved by simply substituting its AST and the built-in syntax

checker. Hence, Xcore emerges as an adaptive and scalable metric

applicable to various languages and scenarios beyond KQL.

6 OFFLINE EVALUATION

We conduct a comprehensive offline evaluation of Xpert, utilizing

real incident data and KQL queries from the production environ-

ment of Microsoft. We compare its performance against several

baselines, to answer the following research questions (RQs):

• RQ1: How effective is Xpert in recommending KQL templates

and queries?

• RQ2: How effective is the post-processor in correcting and refin-

ing the generated KQL queries?

• RQ3: How does Xcore outperform other NLP metrics?

We provide answers to these RQs in the subsequent subsections.

6.1 Experiment Setup

6.1.1 Dataset. We use a large-scale dataset comprising incident

context and corresponding KQL queries from the top-10 services

with themost incident amount inMicrosoft. These services are the

most representative and have the most significant impact. The data

was partitioned into 197,666 instances for training and validation

(for non-LLMs baselines) / retrieval (for LLMs), and 3,000 instances

for testing. To prevent data leakage, incidents in the test data were

strictly created after incidents in the training data. Note that we

perform one-shot offline evaluation and do not add the incidents

to the vector database in an online manner during this evaluation.

6.1.2 Baselines. We evaluate the performance of Xpert against

several baselines, including smaller language models, namely: (i)
Bart [57], a popular sequence-to-sequence transformermodel trained

with denoising autoencoder fashion; (ii) T5 [58], an encoder-decoder
transformer model pre-trained on a mixture of unsupervised and

supervised tasks; (iii) CodeT5 [59], an extension of T5 specifically

designed for code-related tasks; and (iv) CodeT5+ [60], a more

advanced version of CodeT5 pretrained with more diverse program-

ming tasks and uses instruction tuning. All of the smaller language

models are fine-tuned with training data. In this study, the terms

“T5”, “CodeT5” and “CodeT5+” refer to their base and 220M versions.

For Xpert, we compare its GPT-3.5 and GPT-4 versions.

6.1.3 Evaluation Metrics. We employ 6 evaluation metrics to

comprehensively assess the quality of the generated KQL queries

from various perspectives. In line with prior research [30, 61, 62],

we adopt two traditional NLP metrics, namely SacreBLEU [50] and

METEOR [51], to evaluate the quality of the generated KQL queries.

While these metrics have inherent limitations when assessing code

quality, they can still offer valuable insights into certain aspects,

such as the lexical similarities. The proposed metric Xcore, ad-

dresses these limitations by evaluating the code from both syntax

and semantic perspectives, making it a crucial measure for assessing

the quality of KQL queries.

Additionally, we utilize TableAcc to quantify the accuracy of

the predicted table names in the queries, which provides a partial

data source assessment. Furthermore, Identicality offers a more

stringent evaluation of the recommended queries, measuring the

proportion of recommended queries that are identical to the ground

truth. To ensure the executability of the generated queries, we also

employ the Validity metric, evaluating the percentage of generated

KQL queries that comply with the KQL grammar. This is a critical

aspect to guarantee the executability of the generated queries.

6.1.4 Implementation. The smaller language models were im-

plemented using Pytorch [63] and fine-tuned on 2 NVIDIA A100

GPUs. Xpert interacts with GPT Ada Embedding, GPT-3.5 and

GPT-4 through the Python API provided by OpenAI. The entire

implementation of Xpert consists of 1,929 lines of C# code and

2,694 lines of Python code.

6.2 KQLs Recommendation Performance (RQ1)

Table 2 presents the performance evaluation of Xpert in recom-

mending KQL templates and full queries, compared to various base-

line models. Notably, Xpert equipped with GPT-4 demonstrates

superior performance across all metrics for both template and query

recommendation. This outcome suggests that Xpert represents

the state-of-the-art approach from various perspectives, encom-

passing improved lexical similarity metrics (BLEU and METEOR),

enhanced syntax correctness and semantic analogy assessments

(Xcore), higher table accuracy (TableAcc), and superior exactmatch-

ing with the ground truth (Identicality) and executability (Validity).

Particularly, its advantage is most pronounced in the Identicality

dimension, where both GPT-3.5 and GPT-4 versions of Xpert sig-

nificantly outperform other smaller language models. This aspect

bears particular significance in the incident management scenario,

as refining a query can be a laborious task for OCEs. A high Iden-

ticality rate in Xpert recommendations renders the process more

user-friendly and accessible, particularly for less experienced OCEs.

CodeT5+ emerges as a stronger baseline compared to other base-

lines, exhibiting comparable performance with Xpert (GPT-3.5)

in several metrics. However, note that CodeT5+ requires a costly

fine-tuning process, rendering it difficult and expensive to adapt

to evolving incident types in an online manner. In contrast, Xpert

offers a more effective, simpler, and cost-efficient solution by ef-

fortlessly adding a new incident and its ground truth query to the

vector database upon arrival, thereby capturing online data drift,

as will be demonstrated in Sec. 7.

Moreover, as templates of KQLs are less diverse compared to

full queries, Xpert achieves greater identicality in template rec-

ommendation compared to query recommendation. This can be

particularly helpful in situations where incident context is incom-

plete. In such cases, OCEs can refine KQL queries based on the

predicted templates, saving the query writing time. Overall, Xpert

Xpert: Empowering Incident Management withQuery Recommendations via Large Language Models ICSE 2024, April 2024, Lisbon, Portugal

Table 2: Performance evaluation of Xpert and other baselines in recommending KQL templates and full queries.

Model

Template Full Query

BLEU METEOR Xcore TableAcc Identicality Validity BLEU METEOR Xcore TableAcc Identicality Validity

Bart 2.91 24.90 39.29 31.15 0.43 75.23 8.54 26.96 36.06 33.02 0.50 66.04

T5 60.90 60.84 38.17 31.02 10.52 49.98 30.29 46.65 31.10 23.94 4.64 33.89

CodeT5 70.48 69.64 59.35 48.21 18.70 77.60 64.44 64.88 57.42 52.39 14.59 73.49

CodeT5+ 73.50 69.77 61.38 48.58 20.00 82.90 66.17 65.35 60.75 55.53 16.13 80.37

Xpert (GPT-3.5) 75.55 67.18 58.19 45.68 30.58 80.87 66.51 64.36 60.27 53.46 24.44 83.01

Xpert (GPT-4) 76.89 71.61 62.40 48.81 35.46 83.27 70.45 67.98 64.2 57.56 29.18 86.34

Table 3: Comparison before and after the post-processing.

Metric

Template Full Query

Before After Before After

BLEU 34.95 36.61 30.52 27.88

METEOR 42.24 46.30 47.77 46.14

Xcore 11.63 35.99 11.19 35.93

TableAcc 22.54 38.03 17.39 31.68

Identicality 0.00 7.04 0.00 10.56

Validity 0.00 50.70 0.00 56.52

delivers remarkable performance in every dimension, especially

when empowered by GPT-4. These inspiring results establishXpert

as an effective solution for recommending KQL queries, thereby

significantly facilitating the job of OCEs during incidents.

Lastly, it is important to highlight the impressive few-shot learn-

ing capability of LLMs observed during our experiments. The aver-

age and median number of similar samples retrieved for the prompt

sequence provided to Xpert, with a maximum of 8k tokens, is 7.41

and 6, respectively. These values are surprisingly small, indicating

that LLMs can achieve remarkable performance with very few ex-

amples for demonstration. In fact, LLMs outperform other smaller

models that are trained with approximately 200 thousand samples

in all evaluated dimensions. This outstanding few-shot learning

ability not only reduces the effort of pre-training and fine-tuning

but also positions LLMs as an ideal solution for real productions.

6.3 Post-proceessor Effectiveness (RQ2)

We now shift our attention to evaluating the effectiveness of the

post-processor in improving the query generation quality. In the

raw predictions of Xpert (GPT-4), a total of 71 templates and 161

queries are found to be invalid. After applying the post-processor,

36 (50.70%) templated and 91 (56.52%) queries are successfully fixed.

Taking a closer look at the impact of the post-processor on these

invalid cases as shown in Table 3, we observe that it significantly

improves the quality of the generated queries across various met-

rics. The Xcore of generated templates and queries improved by

24.36 and 24.74 respectively, showcasing its efficacy in enhancing

the overall query quality. Moreover, the identicality metric saw an

improvement of 7.04% and 10.56% for templates and queries respec-

tively, further highlighting the necessity and effectiveness of the

post-processor. These results demonstrate that the post-processor

is an indispensable component of Xpert, as it plays a vital role in

refining and enhancing the generated queries.

6.4 Xcore Evaluation (RQ3)

Finally, we present a comparison of Xcore with other NLP metrics

to emphasize the effectiveness of our proposed design. In Fig. 9,

0 20 40 60 80 100
Score

0.00

0.02

0.04

0.06

0.08

De
ns

ity

All samples
BLEU
METEOR
Xcore

0 20 40 60 80 100
Score

0.00

0.02

0.04

0.06

0.08

30

Samples with Xcore < 30
BLEU
METEOR
Xcore

Figure 9: Distributions of BLEU, METEOR and Xpert in the

test set (left), and samples with Xcore below 30 (right).

Errors

| where TIMESTAMP >= datetime(2022-03-27

22:04:06Z)

| where operationName == "ImagePull"

| where SourceNamespace contains "us-east"

| where Deployment == "svc-mesh-3d21"

| summarize count() by subscriptionId

JobErrors

| where TIMESTAMP < datetime(2022-03-27

22:04:06Z)

| where operationName != "ImagePull"

| where SourceNamespace contains "us-east"

| where Deployment = "svc-mesh-3d21"

| summarize count(subscriptionId)

Ground truth Generated sample

Invalid operator `=`

`<` is opposite to `>=`

`!=`is opposite to `==`

Tables do not match

count the number of records for each
unique subscriptionId

count the number of records with
non-null subscriptionIds

1

2

3

4

5

6

Figure 10: A representative generated sample and its corre-

sponding ground truth.

we depict the distributions of BLEU, METEOR, and Xcore on all

samples in the test set (left), as well as on selected samples where

Xcore is below 30 (right). Upon examination, we observe distinct

differences in the distributions of Xcore compared to the other two

metrics. While Xpert and METEOR show significant overlap in

the high score region (over 90), they exhibit substantial differences

in the low score region (<30). Upon closer examination of the sam-

ples where Xcore falls below 30 in the right subplot, we observe

that although Xcore values are low, both BLEU and METEOR met-

rics are evenly distributed across their entire range from 0 to 100.

This observation prompts us to investigate the discrepancy among

these metrics in these particular samples to determine which metric

provides a more reasonable evaluation.

To this end, we present a representative generated sample and

its corresponding ground truth in Fig. 10. The generated sample

achieves satisfactory scores on NLP metrics (75.67 for BLEU and

87.02 for METEOR), as there is a high lexical similarity between the

two queries. However, it only achieves a score of 3.54 on Xcore,

which is significantly lower. Upon closer examination, we observe

the following issues: (i) the generated sample fails the validity check

(Sec. 5.2) due to the incorrect usage of = in the where operator (line
5); (ii) various operations are inverted in the generated sample (lines

2 and 3), resulting in substantial sub-component mismatches (Sec.

5.3); and (iii) examination of the output schema (Sec. 5.4) uncovers

discrepancies in the source tables and output columns in the two

ICSE 2024, April 2024, Lisbon, Portugal Y. Jiang, C. Zhang, S. He, Z. Yang, M. Ma, S. Qin, Y. Kang, Y. Dang, S. Rajmohan, Q. Lin, D. Zhang

Table 4: Performance comparison of Xpert in productions.

Model

Template Full Query

Xcore Identicality Xcore Identicality

CodeT5+ (Offline) 58.5 10.04 64.94 2.62

Xpert (Offline) 55.63 14.19 66.55 11.14

CodeT5+ (Online) 58.79 10.04 65.43 2.62

Xpert (Online) 58.74 18.12 72.96 17.69

queries (lines 1 and 6). These discrepancies result in low scores of

V , S, and O, leading to the low overall Xcore.

This discrepancy between Xcore and other NLP metrics high-

lights the effectiveness and reliability of Xcore for evaluating the

quality of KQL queries. While the generated sample may appear

plausible and lexically similar based on BLEU and METEOR, closer

examination reveals its invalidity and inaccuracies, making Xcore

a more robust and meaningful metric in this context.

7 PRODUCTION IMPACT

The proposed framework Xpert, has been seamlessly integrated

as a crucial component within the incident management system

of Microsoft. A pilot study was conducted, wherein Xpert was

deployed for approximately one month on incidents in a represen-

tative service. Whenever an incident ticket is received, Xpert is

triggered to recommend the first XQL query for incident manage-

ment, following the workflow depicted in Fig. 6. Unlike the offline

evaluation, each time a new incident ticket and its corresponding

ground-truth query written by OCEs are recorded, we promptly

add this instance to the vector database. This functionality enables

subsequent requests to retrieve this recorded sample, ensuring that

Xpert can continuously adapt to new types of incidents without

requiring adjustments to other models or settings. We refer to this

framework equipped with GPT-4 deployed in the production envi-

ronment, as “Online Xpert”. To compare the effectiveness of Xpert

in the real production environment, we conducted fine-tuning on

CodeT5+ weekly (referred to as “Online CodeT5+”) and used its

latest version for predictions. For both Xpert and CodeT5+, we

compare their performances without vector database updates and

fine-tuning, denoting them as “Offline” versions.

The piloting results are presented in Table 4. The online experi-

ments yield inspiring outcomes, revealing the superiority of Xpert

over CodeT5+ in various aspects. Firstly, both online and offline

versions of Xpert significantly outperform CodeT5+ in terms of

Xcore and Identicality in XQL query recommendation, affirming

Xpert’s consistent advantage in over smaller language models.

Secondly, the online version of Xpert demonstrates superior per-

formance compared to its offline counterpart. This suggests that

Xpert effectively captures the significant time variation of inci-

dents through effortless vector database updates, enabling it to

adapt more flexibly to the ever-evolving real production environ-

ment. Furthermore, the average online response time for Xpert is

approximately 5 seconds, demonstrating its efficiency in meeting

the online responsiveness requirement. All these results further un-

derscore Xpert’s potential as a more robust, efficient and adaptive

solution for XQL recommendation in practical scenarios.

Title: [Errors][ENV-Shared][eastus] operationName:"FlowHttpEngine.GetErrorMessageFromException"

Summary: NA

Discussion:
 Impacted Resource Account: Service L
 ...
 Resource Type: OperationErrorISE2
 Resource: Error_FlowHttpEngine.Worker.razzle_f98e2379d9ee49efab7a14ea82c3f438
 ...
 Lookback duration: 60 minutes.
 Monitor.DataEndTime 2022-03-19 03:03:31Z
 Monitor.DataStartTime 2022-03-19 02:03:31Z

Incident context

Ground truth == KQL query recommended by Ground truth == KQL query recommended by

Figure 11: A successful case that Xpert recommends an KQL

query identical to the ground truth.

8 DISCUSSION

8.1 Case Study

8.1.1 Successful Case. In Fig. 11, we present a successful case

where Xpert recommends an KQL query that perfectly matches

the ground truth written by an OCE. In this case, Xpert efficiently

extracts relevant information from the incident title and discussion,

including details such as time, region, and resource ID. It skillfully

places this extracted information in the appropriate positionswithin

the query to construct the operands. By leveraging this context,

Xpert successfully generates a query that is not only syntactically

and semantically correct but also identical to the query written

by the OCE. This outcome demonstrates the superior information

extraction capability of LLMs, enabling them to distill valuable

insights from complex and unstructured data. Consequently, LLMs

are well-suited for the KQL query recommendation task and can

provide significant assistance to OCEs.

8.1.2 Failed Case. However, it is essential to acknowledge that

Xpert may not always provide optimal recommendations and may

encounter challenges when dealing with incidents that lack crucial

information. In Fig. 12, we illustrate a case where Xpert fails to

recommend the correct query to OCEs. Although the ground truth

query is short and simple, crucial information, such as TIMESTAMP
and activityId, is absent from the incident context, rendering

it impossible to predict these elements accurately. Upon closer

examination of the query recommended by Xpert, we observe that

it still extracts useful information from the incident, such as the

error and service details. Additionally, we found that historically,

queries similar to the predicted one have occurred frequently in

this service. This indicates that the prediction does not come from

nowhere, as Xpert encapsulates significant incident information

and its predicted query can serve as a valuable reference for OCEs.

8.2 Threats to Validity

8.2.1 Internal Validity. Throughout this study, we encountered

challenges related to the instability of LLMs provided by Ope-

nAI. The LLM service underwent continuous upgrades with mul-

tiple model versions and API changes released. Moreover, hyper-

parameter settings, such as temperature and top_p, may also result

Xpert: Empowering Incident Management with Query Recommendations via Large Language Models ICSE 2024, April 2024, Lisbon, Portugal

Title: Service A shows Provisioning/AllocationError

Summary: When we try to scale it shows : Provisioning/AllocationError. Otherwise, there are 10

Kubernetes nodes in running state, but it is not able to deploy pods on those. Pods are in pending state
for our service.

Discussion:
 Incident Created

Incident context

Ground
truth:

Ground
truth:

:::

Figure 12: A failed case that Xpert recommends a different

KQL query to the ground truth.

in unstable outcomes. To address this issue, we fix the API version

and model version and set both temperature and top_p to zero.

Despite these configurations, we observed occasional differences in

the LLM response even for the same request. This may be attributed

to float precision differences in the underlying hosting machines.

The datasets in this study were collected from the incident man-

agement platform at Microsoft. Due to the vast volume of inci-

dents over years, we focused on selecting incidents of high severity

and top cloud services starting from the year 2022, as they are

of greater significance and relevance. While preparing the KQL

queries, we extracted the queries from free-text discussions using

domain rules. However, this process may introduce inaccuracies or

incompleteness in the extracted queries. To mitigate this concern,

we meticulously designed and iterated the rules through multiple

rounds, and we also removed queries that were found to be invalid.

8.2.2 External Validity. While our work focuses on the KQL, our

approach is easily applicable to other query languages, such as SQL.

The key advantage lies in our method’s ability to generalize without

requiring model fine-tuning, leveraging the in-context learning

capability of LLMs. Additionally, since popular query languages

like SQL are extensively encountered during LLM pre-training, we

anticipate even better performance when applied to such languages.

Our experiments were conducted on a select set of core services

withinMicrosoft. However, the fundamental concept and work-

flow of our proposed method can be adapted to other services and

scenarios with ease. By incorporating incident-query data from

new services, our approach can be readily extended to support ad-

ditional services. Furthermore, in scenarios with abundant pairwise

data, our approach can be adopted to build a versatile pipeline.

9 RELATEDWORK

In this section, we examine a selection of notable research studies

pertaining to the generation of DSL and the application of language

models in the field of software engineering.

9.1 Domain-Specific Language Generation

Deep learning techniques have gained significant traction in the

DSL generation domain, particularly for languages like SQL [64, 65],

LaTeX [66], and GraphQL [67]. These methods aim to make pro-

gramming languages in specific domains more accessible to non-

technical users. Notably, text-to-SQL has received considerable

research attention, as SQL is widely used for data querying and in-

sights discovery. In [68], a fine-tuned T5model is employed to guide

the auto-regressive decoders of language models through incremen-

tal parsing. This approach helps minimize the generation of invalid

code during the process. Hui et al., propose S2SQL [69], which lever-
ages syntactic dependency information from text-to-SQL questions

to enhance performance, surpassing a set of pretrained models.

Additionally, Liu et al., evaluate the text-to-SQL generation capabil-

ities of ChatGPT [70], demonstrating its remarkable performance

in zero-shot scenarios [71].

9.2 LLMs for Software Engineering

The advancement of LLMs has greatly contributed to the feasibility

and capabilities of these models in the field of software engineering

[4, 30, 38]. For instance, Ahmed [30] employed GPT models to rec-

ommend root causes and mitigation steps for incidents, facilitating

incident management. Promising results showcased the potential

of LLMs in incident management. Similarly, RCACopilot [38] uti-

lized LLMs to improve root cause analysis accuracy by leveraging

additional information from troubleshooting guides and chain-of-

thought techniques [72]. Furthermore, Jin et al., [4] employed LLMs

to summarize outages in cloud environments. Online performance

evaluations demonstrated that LLMs can achieve human-level out-

age summaries at significantly faster speeds (251.2×). In a departure
from the aforementioned practices, Xpert presents a pioneering

framework for automatically recommending DSL queries to support

incident management tasks.

10 CONCLUSION

Incident management plays a critical role in ensuring the smooth

functioning of cloud infrastructure, requiring OCEs to execute DSL

queries for understanding incidents and support the management

processes. This paper conducts a comprehensive empirical study

on KQL queries used in a large-scale incident management system

at Microsoft, revealing valuable insights into the frequency, com-

plexity, and diversity of KQL queries. Based on these findings, we

propose Xpert, an end-to-end framework that leverages LLMs and

ICL to provide customized query recommendations tailored to new

incidents, thus empowering the incident management process. To

evaluate the quality of the generated queries, we introduce Xcore,

a dedicated evaluation metric that comprehensively assesses query

performance from three different perspectives. In offline evaluations

using real-world data, Xpert outperforms other baseline models

across various metrics. Furthermore, we have successfully deployed

Xpert in the real production environment of Microsoft, and the

piloting results confirm Xpert’s reliability in supporting incident

management. To the best of our knowledge, this paper presents the

first empirical study of DSL queries for incident management, and

Xpert stands as a pioneering KQL recommendation framework

specifically designed to enhance incident management processes.

11 DATA AVAILABILITY

The data used in this work originates from the production of Mi-

crosoft and contains highly confidential information.We are there-

fore unable to make the data publicly available due to security

concerns.

ICSE 2024, April 2024, Lisbon, Portugal Y. Jiang, C. Zhang, S. He, Z. Yang, M. Ma, S. Qin, Y. Kang, Y. Dang, S. Rajmohan, Q. Lin, D. Zhang

REFERENCES

[1] Tharam Dillon, Chen Wu, and Elizabeth Chang. Cloud computing: issues and

challenges. In 2010 24th IEEE international conference on advanced information
networking and applications, pages 27–33. Ieee, 2010.

[2] Xiaohan Yan, Ken Hsieh, Yasitha Liyanage, Minghua Ma, Murali Chintalapati,

Qingwei Lin, Yingnong Dang, and Dongmei Zhang. Aegis: Attribution of con-

trol plane change impact across layers and components for cloud systems. In

2023 IEEE/ACM 45th International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP), pages 222–233. IEEE, 2023.

[3] Bernd Grobauer and Thomas Schreck. Towards incident handling in the cloud:

challenges and approaches. In Proceedings of the 2010 ACM workshop on Cloud
computing security workshop, pages 77–86, 2010.

[4] Pengxiang Jin, Shenglin Zhang, Minghua Ma, Haozhe Li, Yu Kang, Liqun Li,

Yudong Liu, Bo Qiao, Chaoyun Zhang, Pu Zhao, et al. Assess and summa-

rize: Improve outage understanding with large language models. arXiv preprint
arXiv:2305.18084, 2023.

[5] Zhuangbin Chen, Yu Kang, Liqun Li, Xu Zhang, Hongyu Zhang, Hui Xu, Yangfan

Zhou, Li Yang, Jeffrey Sun, Zhangwei Xu, et al. Towards intelligent incident

management: why we need it and how we make it. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pages 1487–1497, 2020.

[6] Liqun Li, Xu Zhang, Shilin He, Yu Kang, Hongyu Zhang, Minghua Ma, Yingnong

Dang, Zhangwei Xu, Saravan Rajmohan, Qingwei Lin, et al. Conan: Diagnosing

batch failures for cloud systems. In 2023 IEEE/ACM 45th International Conference
on Software Engineering: Software Engineering in Practice (ICSE-SEIP), pages 138–
149. IEEE, 2023.

[7] Xu Zhang, Yong Xu, Si Qin, Shilin He, Bo Qiao, Ze Li, Hongyu Zhang, Xukun

Li, Yingnong Dang, Qingwei Lin, et al. Onion: identifying incident-indicating

logs for cloud systems. In Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, pages 1253–1263, 2021.

[8] Chaoyun Zhang, Marco Fiore, Cezary Ziemlicki, and Paul Patras. Microscope:

mobile service traffic decomposition for network slicing as a service. In Pro-
ceedings of the 26th Annual International Conference on Mobile Computing and
Networking, pages 1–14, 2020.

[9] Chenyu Zhao, Minghua Ma, Zhenyu Zhong, Shenglin Zhang, Zhiyuan Tan, Xiao

Xiong, LuLu Yu, Jiayi Feng, Yongqian Sun, Yuzhi Zhang, et al. Robust multimodal

failure detection for microservice systems. arXiv preprint arXiv:2305.18985, 2023.
[10] Chaoyun Zhang, Paul Patras, and Hamed Haddadi. Deep learning in mobile

and wireless networking: A survey. IEEE Communications surveys & tutorials,
21(3):2224–2287, 2019.

[11] Chaoyun Zhang, Marco Fiore, Iain Murray, and Paul Patras. Cloudlstm: A re-

current neural model for spatiotemporal point-cloud stream forecasting. In

Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages

10851–10858, 2021.

[12] Zhengran Zeng, Yuqun Zhang, Yong Xu, Minghua Ma, Bo Qiao, Wentao Zou,

Qingjun Chen, Meng Zhang, Xu Zhang, Hongyu Zhang, et al. Traceark: To-

wards actionable performance anomaly alerting for online service systems. In

2023 IEEE/ACM 45th International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP), pages 258–269. IEEE, 2023.

[13] Lu Wang, Chaoyun Zhang, Ruomeng Ding, Yong Xu, Qihang Chen, Wentao Zou,

Qingjun Chen, Meng Zhang, Xuedong Gao, Hao Fan, et al. Root cause analysis

for microservice systems via hierarchical reinforcement learning from human

feedback. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 5116–5125, 2023.

[14] Yuhang Chen, Chaoyun Zhang, Minghua Ma, Yudong Liu, Ruomeng Ding, Bowen

Li, Shilin He, Saravan Rajmohan, Qingwei Lin, and Dongmei Zhang. Imdiffusion:

Imputed diffusion models for multivariate time series anomaly detection. arXiv
preprint arXiv:2307.00754, 2023.

[15] Manish Shetty, Chetan Bansal, Sai Pramod Upadhyayula, Arjun Radhakrishna,

and Anurag Gupta. Autotsg: learning and synthesis for incident troubleshooting.

In Proceedings of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pages 1477–1488,
2022.

[16] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: A method

for automatic evaluation of machine translation. In Proceedings of the 40th Annual
Meeting on Association for Computational Linguistics, ACL ’02, page 311–318,

USA, 2002. Association for Computational Linguistics.

[17] Van-Hoang Le and Hongyu Zhang. An evaluation of log parsing with chatgpt.

arXiv preprint arXiv:2306.01590, 2023.
[18] Le Xiao and Xiaolin Chen. Enhancing llm with evolutionary fine tuning for news

summary generation. arXiv preprint arXiv:2307.02839, 2023.
[19] Ruomeng Ding, Chaoyun Zhang, Lu Wang, Yong Xu, Minghua Ma, Wei Zhang,

Si Qin, Saravan Rajmohan, Qingwei Lin, and Dongmei Zhang. Everything of

thoughts: Defying the law of penrose triangle for thought generation. arXiv
preprint arXiv:2311.04254, 2023.

[20] Dheeraj Mekala, Jason Wolfe, and Subhro Roy. Zerotop: Zero-shot task-oriented

semantic parsing using large language models. arXiv preprint arXiv:2212.10815,

2022.

[21] Priyan Vaithilingam, Tianyi Zhang, and Elena L Glassman. Expectation vs.

experience: Evaluating the usability of code generation tools powered by large

language models. In Chi conference on human factors in computing systems
extended abstracts, pages 1–7, 2022.

[22] Bulbul Gupta, Pooja Mittal, and Tabish Mufti. A review on amazon web service

(aws), microsoft azure & google cloud platform (gcp) services. In Proceedings
of the 2nd International Conference on ICT for Digital, Smart, and Sustainable
Development, ICIDSSD 2020, 27-28 February 2020, Jamia Hamdard, New Delhi,
India, 2021.

[23] Supriyo Ghosh, Manish Shetty, Chetan Bansal, and Suman Nath. How to fight

production incidents? an empirical study on a large-scale cloud service. In

Proceedings of the 13th Symposium on Cloud Computing, pages 126–141, 2022.
[24] WeijingWang, Junjie Chen, Lin Yang, Hongyu Zhang, Pu Zhao, Bo Qiao, Yu Kang,

Qingwei Lin, Saravanakumar Rajmohan, Feng Gao, et al. How long will it take to

mitigate this incident for online service systems? In 2021 IEEE 32nd International
Symposium on Software Reliability Engineering (ISSRE), pages 36–46. IEEE, 2021.

[25] Manish Shetty, Chetan Bansal, Sumit Kumar, Nikitha Rao, Nachiappan Nagappan,

and Thomas Zimmermann. Neural knowledge extraction from cloud service

incidents. In 2021 IEEE/ACM 43rd International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP), pages 218–227. IEEE, 2021.

[26] Alex Khang, Vladimir Hahanov, Gardashova Latafat Abbas, and Vugar Abdullayev

Hajimahmud. System and incident management. AI-centric smart city ecosystems:
technologies, design and implementation, page 21, 2022.

[27] Chen Luo, Jian-Guang Lou, Qingwei Lin, Qiang Fu, Rui Ding, Dongmei Zhang,

and Zhe Wang. Correlating events with time series for incident diagnosis. In

Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 1583–1592, 2014.

[28] Hansheng Ren, Bixiong Xu, Yujing Wang, Chao Yi, Congrui Huang, Xiaoyu Kou,

Tony Xing, Mao Yang, Jie Tong, and Qi Zhang. Time-series anomaly detection ser-

vice at microsoft. In Proceedings of the 25th ACM SIGKDD international conference
on knowledge discovery & data mining, pages 3009–3017, 2019.

[29] Liqun Li, Xu Zhang, Xin Zhao, Hongyu Zhang, Yu Kang, Pu Zhao, Bo Qiao,

Shilin He, Pochian Lee, Jeffrey Sun, et al. Fighting the fog of war: Automated

incident detection for cloud systems. In 2021 USENIX Annual Technical Conference
(USENIX ATC 21), pages 131–146, 2021.

[30] Toufique Ahmed, Supriyo Ghosh, Chetan Bansal, Thomas Zimmermann, Xuchao

Zhang, and Saravan Rajmohan. Recommending root-cause and mitigation steps

for cloud incidents using large language models. In ICSE 2023, 2023.
[31] Marjan Mernik, Jan Heering, and Anthony M Sloane. When and how to develop

domain-specific languages. ACM computing surveys (CSUR), 37(4):316–344, 2005.
[32] Chris J Date. A Guide to the SQL Standard. Addison-Wesley Longman Publishing

Co., Inc., 1989.

[33] Olaf Hartig and Jorge Pérez. Semantics and complexity of graphql. In Proceedings
of the 2018 World Wide Web Conference, pages 1155–1164, 2018.

[34] Navin Sabharwal, Piyush Pandey, Navin Sabharwal, and Piyush Pandey. Work-

ing with prometheus query language (promql). Monitoring Microservices and
Containerized Applications: Deployment, Configuration, and Best Practices for
Prometheus and Alert Manager, pages 141–167, 2020.

[35] Splunk Search Processing Language (SPL), howpublished = https://docs.splunk.

com/documentation/splunk/latest/searchreference/sqltosplunk, note = Accessed:

2023-07-06.

[36] Phuong Pham, Vivek Jain, Lukas Dauterman, Justin Ormont, and Navendu Jain.

Deeptriage: Automated transfer assistance for incidents in cloud services. In

Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 3281–3289, 2020.

[37] Zilong He, Pengfei Chen, Yu Luo, Qiuyu Yan, Hongyang Chen, Guangba Yu,

and Fangyuan Li. Graph based incident extraction and diagnosis in large-scale

online systems. In Proceedings of the 37th IEEE/ACM International Conference on
Automated Software Engineering, pages 1–13, 2022.

[38] Yinfang Chen, Huaibing Xie, Minghua Ma, Yu Kang, Xin Gao, Liu Shi, Yunjie

Cao, Xuedong Gao, Hao Fan, Ming Wen, Jun Zeng, Supriyo Ghosh, Xuchao

Zhang, Chaoyun Zhang, et al. Empowering practical root cause analysis by large

language models for cloud incidents. arXiv preprint arXiv:2305.15778, 2023.
[39] OpenAI. GPT-4 technical report, 2023.

[40] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne

Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal

Azhar, et al. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971, 2023.

[41] Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong

He. Zero-infinity: Breaking the gpu memory wall for extreme scale deep learning.

In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–14, 2021.

[42] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, et al. Language models are few-shot learners. Advances in neural infor-
mation processing systems, 33:1877–1901, 2020.

https://docs.splunk.com/documentation/splunk/latest/searchreference/sqltosplunk
https://docs.splunk.com/documentation/splunk/latest/searchreference/sqltosplunk

Xpert: Empowering Incident Management with Query Recommendations via Large Language Models ICSE 2024, April 2024, Lisbon, Portugal

[43] Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh

Hajishirzi, and Luke Zettlemoyer. Rethinking the role of demonstrations: What

makes in-context learning work? In Proceedings of the 2022 Conference on Empir-
ical Methods in Natural Language Processing, pages 11048–11064, 2022.

[44] Niklas Muennighoff. Sgpt: GPT sentence embeddings for semantic search. arXiv
preprint arXiv:2202.08904, 2022.

[45] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search

with GPUs. IEEE Transactions on Big Data, 7(3):535–547, 2019.
[46] Baoli Li and Liping Han. Distance weighted cosine similarity measure for text

classification. In Intelligent Data Engineering and Automated Learning–IDEAL
2013: 14th International Conference, IDEAL 2013, Hefei, China, October 20-23, 2013.
Proceedings 14, pages 611–618. Springer, 2013.

[47] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and

GrahamNeubig. Pre-train, prompt, and predict: A systematic survey of prompting

methods in natural language processing. ACM Computing Surveys, 55(9):1–35,
2023.

[48] Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hosseini, Fabio Petroni, Timo

Schick, Jane Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and Edouard Grave.

Few-shot learning with retrieval augmented language models. arXiv preprint
arXiv:2208.03299, 2022.

[49] Iulian Neamtiu, Jeffrey S Foster, and Michael Hicks. Understanding source

code evolution using abstract syntax tree matching. In Proceedings of the 2005
international workshop on Mining software repositories, pages 1–5, 2005.

[50] Matt Post. A call for clarity in reporting bleu scores. In Proceedings of the Third
Conference on Machine Translation: Research Papers, page 186. Association for

Computational Linguistics, 2018.

[51] Satanjeev Banerjee and Alon Lavie. METEOR: An automatic metric for MT

evaluation with improved correlation with human judgments. In Proceedings
of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine
Translation and/or Summarization, pages 65–72, Ann Arbor, Michigan, June 2005.

Association for Computational Linguistics.

[52] Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sun-

daresan, Ming Zhou, Ambrosio Blanco, and Shuai Ma. Codebleu: a method for

automatic evaluation of code synthesis, 2020.

[53] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li,

James Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir

Radev. Spider: A large-scale human-labeled dataset for complex and cross-domain

semantic parsing and text-to-sql task, 2019.

[54] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your

code generated by chatgpt really correct? rigorous evaluation of large language

models for code generation, 2023.

[55] Panagiotis Louridas. Static code analysis. Ieee Software, 23(4):58–61, 2006.
[56] Xiaojun Xu, Chang Liu, and Dawn Song. Sqlnet: Generating structured queries

from natural language without reinforcement learning, 2017.

[57] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman

Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. Bart: Denoising

sequence-to-sequence pre-training for natural language generation, translation,

and comprehension. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 7871–7880, 2020.

[58] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,

Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of

transfer learning with a unified text-to-text transformer. The Journal of Machine
Learning Research, 21(1):5485–5551, 2020.

[59] Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. Codet5: Identifier-

aware unified pre-trained encoder-decoder models for code understanding and

generation. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pages 8696–8708, 2021.

[60] Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi DQ Bui, Junnan Li, and

Steven CH Hoi. Codet5+: Open code large language models for code understand-

ing and generation. arXiv preprint arXiv:2305.07922, 2023.
[61] David Gros, Hariharan Sezhiyan, PremDevanbu, and Zhou Yu. Code to comment"

translation" data, metrics, baselining & evaluation. In Proceedings of the 35th
IEEE/ACM International Conference on Automated Software Engineering, pages
746–757, 2020.

[62] Toufique Ahmed and Premkumar Devanbu. Multilingual training for software

engineering. In Proceedings of the 44th International Conference on Software
Engineering, pages 1443–1455, 2022.

[63] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.

Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems, 32, 2019.

[64] Bowen Qin, Binyuan Hui, Lihan Wang, Min Yang, Jinyang Li, Binhua Li, Ruiying

Geng, Rongyu Cao, Jian Sun, Luo Si, et al. A survey on text-to-sql parsing:

Concepts, methods, and future directions. arXiv preprint arXiv:2208.13629, 2022.
[65] George Katsogiannis-Meimarakis and Georgia Koutrika. A survey on deep

learning approaches for text-to-sql. The VLDB Journal, pages 1–32, 2023.
[66] Zelun Wang and Jyh-Charn Liu. Translating math formula images to latex

sequences using deep neural networks with sequence-level training. International
Journal on Document Analysis and Recognition (IJDAR), 24(1-2):63–75, 2021.

[67] Pin Ni, Ramin Okhrati, Steven Guan, and Victor Chang. Knowledge graph and

deep learning-based text-to-graphql model for intelligent medical consultation

chatbot. Information Systems Frontiers, pages 1–20, 2022.
[68] Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. PICARD: Parsing

incrementally for constrained auto-regressive decoding from language models.

In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pages 9895–9901, 2021.

[69] Binyuan Hui, Ruiying Geng, Lihan Wang, Bowen Qin, Yanyang Li, Bowen Li, Jian

Sun, and Yongbin Li. S2sql: Injecting syntax to question-schema interaction graph

encoder for text-to-sql parsers. In Findings of the Association for Computational
Linguistics: ACL 2022, pages 1254–1262, 2022.

[70] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela

Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Train-

ing language models to follow instructions with human feedback. Advances in
Neural Information Processing Systems, 35:27730–27744, 2022.

[71] Aiwei Liu, Xuming Hu, Lijie Wen, and Philip S Yu. A comprehensive evaluation

of chatgpt’s zero-shot text-to-sql capability. arXiv preprint arXiv:2303.13547, 2023.
[72] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,

Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning

in large language models. Advances in Neural Information Processing Systems,
35:24824–24837, 2022.

	Abstract
	1 Introduction
	2 Background
	2.1 Incident Management in Cloud
	2.2 KQL and KQL Queries
	2.3 System Objective

	3 Empirical Study
	3.1 RQ1: Frequency of KQL Queries
	3.2 RQ2: Complexity of KQL Queries
	3.3 RQ3: Diversity of KQL queries

	4 The Design of Xpert
	4.1 Xpert in a Nutshell
	4.2 Incident Data Processor
	4.3 KQL Query Recommendation
	4.4 Post-Processor

	5 Evaluation with Xcore
	5.1 Design of Xcore
	5.2 The Syntax and Semantic Check
	5.3 Sub-component Matching
	5.4 Output-Schema Matching
	5.5 Summarizing the Final Xcore

	6 Offline Evaluation
	6.1 Experiment Setup
	6.2 KQLs Recommendation Performance (RQ1)
	6.3 Post-proceessor Effectiveness (RQ2)
	6.4 Xcore Evaluation (RQ3)

	7 Production Impact
	8 Discussion
	8.1 Case Study
	8.2 Threats to Validity

	9 Related Work
	9.1 Domain-Specific Language Generation
	9.2 LLMs for Software Engineering

	10 Conclusion
	11 Data Availability
	References

